Skip to main content
Log in

Off-axis structures of spreading zones according to results of experimental modeling

  • Published:
Geotectonics Aims and scope

Abstract

The off-axis topography of spreading ridges is a result of tectonic and magmatic processes occurring in the axial zone and operating off the ridge axis during further evolution of the crust. The results of physical and numerical simulations have shown that differences in topography roughness, rift valley depth, frequency and amplitude of normal faults, and geometric stability of the rift axis are determined by (a) the rate of extension and accretion of the new crust, (b) the thickness of the brittle lithospheric layer, and (c) the temperature of the underlying asthenosphere. Under conditions of the fast spreading, the stationary axial magma chamber in the crust predetermines the existence of the thinner and weakened lithosphere. As a result, the axis jumps for a short distance and the axis geometry remains almost rectilinear. The destruction of the thin axial lithosphere with a low mechanical strength results in formation of frequent and low-amplitude normal faultings. All these factors lead to the formation of the characteristic poorly dissected topography of fast-spreading ridges. Without a stationary axial magmatic chamber in the crust of slow-spreading ridges and with a thick and strong lithosphere, a deeply dissected axial and off-axis topography arises. The axis jumps for a significant distance within the rift valley, giving rise to geometric instability of the axis and development of transform and nontransform offsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. I. Galushkin and E. P. Dubinin, “Thermal regime of the lithosphere by jump of spreading axis at the Mathematicians Ridge,” Fizika Zemli, No. 9, 59–69 (1992).

    Google Scholar 

  2. Yu. I. Galushkin, E. P. Dubinin, and A. A. Sveshnikov, “A nonstationary model of the thermal regime of axial zones of mid-ocean ridges: formation of crustal and mantle magma chambers,” Izv. Phys. Solid Earth 43(2), 130–147 (2007).

    Article  Google Scholar 

  3. Yu. I. Galushkin, E. P. Dubinin, and A. A. Sveshnikov, “Rheological layering of the oceanic lithosphere in rift zones of mid-oceanic ridges,” Dokl. Earth Sci. 418(1), 114–118 (2008).

    Article  Google Scholar 

  4. A. L. Grokholskii and E. P. Dubinin, “Experimental modeling of structure-forming deformations in rift zones of mid-ocean ridges,” Geotectonics 40(1), 64–80 (2006).

    Article  Google Scholar 

  5. A. L. Grokholskii, E. P. Dubinin, and I. V. Shapovalova, “Structure formation in areas of nontransform offsets of axial spreading zones (analog modeling),” Moscow Univ. Geol. Bull. 65(3), 185–193 (2010).

    Article  Google Scholar 

  6. A. L. Grokholskii and E. P. Dubinin, “Structure formation in the rift zones and in the transverse offset of the spreading axes: results of physical modeling,” Izv. Phys. Solid Earth 46(5), 412–418 (2010).

    Article  Google Scholar 

  7. A. L. Grokholskii, E. P. Dubinin, K. T. Sevinyan, and Yu. I. Galushkin, “Experimental modeling of interaction between hotspot and spreading ridge, a case of the Southeast Indian Ridge,” in The Earth’s Life (MGU, Moscow, 2012), No. 34, pp. 24–35 [in Russian].

    Google Scholar 

  8. E. P. Dubinin and A. A. Sveshnikov, “Evolution of the lithosphere under extinct spreading ridges (results of mathematical modeling),” Geotectonics 34(3), 234–250 (2000).

    Google Scholar 

  9. E. P. Dubinin and S. A. Ushakov, Oceanic Rifting (GEOS, Moscow, 2001) [in Russian].

    Google Scholar 

  10. E. P. Dubinin, A. V. Rozova, and A. A. Sveshnikov, “Endogenic nature of variations in the bottom topography of the mid-ocean rift zones with intermediate spreading rates,” Oceanology 49(2), 265–280 (2009).

    Article  Google Scholar 

  11. E. P. Dubinin, Yu. I. Galushkin, and A. A. Sveshnikov, “A model of oceanic crust accretion and its geodynamic implications,” in The Earth’s Life: Geology, Geodynamics, Ecology, and Museum Science (MGU, Moscow, 2010), pp. 53–82 [in Russian].

    Google Scholar 

  12. A. V. Il’in, “Origin and development of the morphological structure of the rift zone of slow-spreading mid-ocean ridges,” Oceanology 50(2), 240–253 (2010).

    Article  Google Scholar 

  13. O. G. Sorokhtin, “Relationship between topography of mid-ocean ridges and rate of oceanic bottom spreading,” Dokl. AN SSSR 208(6), 1338–1341 (1973).

    Google Scholar 

  14. A. I. Shemenda, “Similarity criteria in mechanical modeling of tectonic processes,” Geol. Geofiz. 24(10), 10–19 (1983).

    Google Scholar 

  15. M. Cannat, D. Sauter, V. Mendel, et al., “Modes of seafloor generation at a melt-poor ultraslow-spreading ridge,” Geology 34(7), 605–608 (2006).

    Article  Google Scholar 

  16. S. M. Carbotte and K. C. Macdonald, “Causes of variation in fault-facing direction on the ocean floor,” Geology 18, 749–752 (1990).

    Article  Google Scholar 

  17. O. Dauteuil, O. Bourgeois, and T. Mauduit, “Lithosphere strength controls oceanic transform zone structure: insights from analogue models,” Geophys. J. Int. 150, 706–714 (2002).

    Article  Google Scholar 

  18. B. Ehlers and W. Jokat, “Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean,” Geophys. J. Int. 177, 451–462 (2009).

    Article  Google Scholar 

  19. J. Escartin, P. A. Cowie, R. C. Searle, et al., “Quantifying tectonic strain and magmatic accretion at a slow spreading ridge segment, Mid-Atlantic Ridge, 29° N,” J. Geophys. Res. 104, 10421–10437 (1999).

    Article  Google Scholar 

  20. J. Escartin, D. Smith, J. Cann, et al., “Central role of detachment faults in accretion of slow-spreading Oceanic Lithosphere,” Nature 455, 790–794 (2008).

    Article  Google Scholar 

  21. J. A. Goff, “A global and regional stochastic analysis of near-ridge abyssal hill morphology,” J. Geophys. Res. 96(B13), 21713–21737 (1991).

    Article  Google Scholar 

  22. J. A. Goff, A. Malinverno, D. J. Fornari, et al., “Abyssal hill segmentation: quantitative analysis of the East Pacific Rise flanks 7°–9° S,” J. Geophys. Res. 98(B8), 13851–13862 (1993)

    Article  Google Scholar 

  23. J. A. Goff, Y. Ma, A. Shah, and J. R. Cochran, “Stochastic analysis of seafloor morphology on the flank of the Southeast Indian Ocean Ridge. The influence of ridge morphology on the formation of abyssal hills,” J. Geophys. Res. 102, 521–534 (1997).

    Google Scholar 

  24. K. A. Kriner, R. A. Pockalny, and R. L. Larson, “Bathymetric gradients of lineated abyssal hills: Inferring seafloor spreading vectors and a new model for hills formed at ultra-fast rates,” Earth Planet. Sci. Lett. 242, 98–110 (2006).

    Article  Google Scholar 

  25. P. Lonsdale, “Regional shape and tectonics of the equatorial East Pacific Rise,” Mar. Geophys. Res. 3, 295–315 (1977).

    Article  Google Scholar 

  26. K. C. Macdonald, “Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone,” Ann. Rev. Earth Planet. Sci., No. 10, 155–190 (1982).

    Google Scholar 

  27. B. V. Malkin and A. I. Shemenda, “Mechanism of rifting: consideration based on results of physical modeling and on geological and geophysical data,” Tectonophysics 199, 193–210 (1991).

    Article  Google Scholar 

  28. A. Malinverno, “Inverse square-root dependence of mid-ocean ridge flank roughness on spreading rate,” Nature 352, 58–60 (1991).

    Article  Google Scholar 

  29. J. Mammerickx and D. Sandwell, “Rifting of old oceanic lithosphere,” J. Geophys. Res. 1(B7), 1975–1988 (1986).

    Article  Google Scholar 

  30. P. J. Michael, C. H. Langmuir, H. J. Dick, et al., “Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean,” Nature 423, 956–961 (2003).

    Article  Google Scholar 

  31. R. L. Parker and D. Oldenburgh, “Thermal model of ocean ridges,” Nature Phys. Sci. 242(122), 137–139 (1973).

    Article  Google Scholar 

  32. W. B. F. Ryan, S. M. Carbotte, J. O. Coplan, et al., “Global multi-resolution topography synthesis,” Geochem. Geophys. Geosyst. 10, Q03014 (2009). doi: 10.1029/2008GC002332

    Article  Google Scholar 

  33. D. Sandwell and W. Smith, “Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate,” J. Geophys. Res. 114, 1–18 (2009).

    Google Scholar 

  34. D. Sauter, H. Sloan, M. Cannat, et al., “From slow to ultra-slow: how does spreading rate affect seafloor roughness and crustal thickness?,” Geology 9(10), 911–914 (2011).

    Article  Google Scholar 

  35. P. R. Shaw and J. Lin, “Causes and consequences of variations in faulting style at the Mid-Atlantic Ridge,” J. Geophys. Res. 98(B12), 21839–21851 (1993).

    Article  Google Scholar 

  36. P. R. Shaw and J. Lin, “Model of ocean ridge lithospheric deformation: dependence on crustal thickness, spreading rate and segmentation,” J. Geophys. Res. 101(B18), 17977–17993 (1996).

    Article  Google Scholar 

  37. A. I. Shemenda and A. L. Grocholsky, “Physical modeling of slow seafloor spreading,” J. Geophys. Res. 99, 9137–9153 (1994).

    Article  Google Scholar 

  38. W. Thatcher and D. P. Hill, “A Simple model for the fault-generated morphology of slow-spreading midoceanic ridges,” J. Geophys. Res. 100, 561–570 (1995).

    Article  Google Scholar 

  39. B. E. Tucholke and J. Lin, “A geological model for the structure of ridge segments in slow spreading ocean crust,” J. Geophys. Res. 99(B6), 11937–11958 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Grokholsky.

Additional information

Original Russian Text © A.L. Grokholsky, E.P. Dubinin, A.V. Kokhan, A.V. Petrova, 2014, published in Geotektonika, 2014, Vol. 48, No. 2, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grokholsky, A.L., Dubinin, E.P., Kokhan, A.V. et al. Off-axis structures of spreading zones according to results of experimental modeling. Geotecton. 48, 87–103 (2014). https://doi.org/10.1134/S0016852114020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852114020034

Keywors

Navigation